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Abstract 

The principle of  maximum entropy, considered as a 
form of statistical inference, is used to obtain an 
estimate of  the electron density function on the basis 
of  partial information. First a maximum-entropy 
probability distribution of maps, which explicitly 
takes into account the available information, is 
obtained, its functional form being a strict con- 
sequence of the type of constraint used. Next the 
electron density function is estimated using this prob- 
ability distribution. For the particular type of con- 
straint considered here the formulation presented is 
shown to correspond exactly to a maximum-entropy 
algorithm using a new form of the configurational 
entropy of  maps. 

I. Introduction 

Entropy maximization methods have been used in 
connection with the problem of image reconstruction 
(Gull & Daniell, 1978). Similar techniques have been 
used by crystallographers to produce electron density 
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maps (Collins, 1982; Wilkins, Varghese & Lehmann, 
1983). The main goal of these methods is to construct 
maps that use all the available information (e.g. 
diffraction data, positivity of the map) while being 
maximally noncommital to any other information. 
Different expressions for the entropy have been used 
(see e.g. Frieden, 1972; Abels, 1974), which were 
associated, sometimes in a non-explicit way, with 
different assumptions. 

In this paper we use a statistical approach and 
information theory to produce a maximum-entropy 
estimate of the electron density function. A 
maximum-entropy probability distribution of maps 
that explicitly takes into account the available infor- 
mation will be obtained starting from first principles. 
The statistical entropy of this probability distribution 
will then be calculated, its functional form being a 
strict consequence of the constraint imposed on the 
sought map. In particular, if the constraints are func- 
tionals of the estimated map, the statistical entropy 
is itself a functional of it and is called the configur- 
ational entropy of the map. For certain types of 
constraints we find the forms used by other authors 
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(Khachaturyan, Semenovskaya & Vainshtein, 1981; 
Collins, 1982; Narayan & Nityananda, 1982; 
Bricogne, 1982), but our entropy formula, which only 
uses positivity and boundedness of the map, differs 
from those already proposed in the literature. The 
basis of the theory presented here is provided by the 
fundamental work of Jaynes (1957). 

Our formulation is not limited to the usual crys- 
tallographic case of positive maps and other situ- 
ations where the sought map is not everywhere posi- 
tive (e.g. scattering-length densities in neutron diffrac- 
tion) are also considered. 

The conceptual difference between the use of 
entropy values to select a particular map and the use 
of a 'probabili ty distribution of maps from which 
estimates are calculated is made particularly clear if 
we assume that no information is available. In the 
first case the uniform map will be the selected one 
whereas in the second case we will obtain a uniform 
distribution of maps. The connection between the 
procedures is that the uniform map is also the expec- 
ted value of the random map computed with the 
uniform distribution. 

Formulations in terms of an underlying probability 
distribution have been used in reciprocal space by 
Britten & Collins (1982) and Piro (1983). In real space 
it has been used by Lajzerowicz & Lajzerowicz (1960) 
and Wilkins et al. (1983). Our formulation uses a 
functional formalism developed by Feynman & Hibbs 
(1965) whose value is the assistance it gives in bring- 
ing together physical insight and mathematical analy- 
sis. Similar results can be obtained using more stan- 
dard techniques. 

A brief discussion of the theoretical limitations of 
entropy maximization methods based on configur- 
ational entropies expressed as functionals of the esti- 
mated map is presented. 

Numerical methods of solution of the fundamental 
equations are developed. Even if the formulation is 
essentially a real-space one the methods involve as 
many variables as structure factors are experimentally 
available. Numerical tests are presented to illustrate 
the predictions of the theory.  

2. Maximum-entropy probability distribution of maps 

The construction of the electron density map using 
diffraction data is a problem conditioned ,by lack of 
information such as limited resolution, missing phase 
values, and errors. Owing to the lack of information 
many different maps can be built consistent with the 
available data, so that a criterion is needed to select 
that map that will be considered as an appropriate 
estimate of the electron density function. A safe 
criterion should allow us to select a map incorporating 
all the available information about the electron 
density function and being maximally noncommital 
with respect to missing information. 

Information theory gives one answer to this prob- 
lem in the following way. We can imagine a machine 
that produces random maps whiletaking into account 
whatever information is given. We can interpret the 
frequency of occurrence of a given map as the proba- 
bility that such a map be produced if we asked the 
machine to produce one. Information theory tells us 
what the results would be if the machine were the 
ideal one, the one that produces random maps while 
taking into account nothing but the available infor- 
mation. 

From a subjectivist point of view this probabilistic 
description is merely an expression of our ignorance 
of the complete information required to lead us to 
definite conclusions. We may consider that each prob- 
ability distribution has inherently associated some 
amount of lack of information or uncertainty about 
the experiment it describes. To make inferences on 
the basis of partial information we should then use 
that probability distribution that has the greatest 
amount of uncertainty while agreeing with whatever 
information is given. 

Information theory tells us that a measure of the 
amount of lack of information exists and is the unique 
one that satisfies the following properties: 

(a) Continuity with respect to the probabilities. 
(b) Independence with respect to the events of 

zero probability. 
(c) Maximum value for the uniform distribution. 
(d) Additivity: the uncertainty of a compound 

experiment is obtained by adding the uncertainty of 
one component to the uncertainty of the other com- 
ponent conditioned by the first one. 

This measure is given by Shannon's statistical 
entropy H associated with the probability distribu- 
tion p (Shannon & Weaver, 1949), 

P = { P i , . . . , P n } ,  Pi>-O, ~, Pi= l 
i = 1  

(1) 
H(p)  = -  E P, In (p,). 

i = 1  

We will use the prob.ability distribution that has 
maximum entropy while agreeing with whatever 
information is given, as, in keeping with the above 
theory, it is the only unbiased assignment we can 
make. This is the working rule of what has been called 
the principle of maximum entropy (PME). Since we 
are looking for a statistical estimation of the electron 
density function we will identify it with the maximum- 
entropy estimate of  the map, i.e. the mean value of  the 
random map computed with a probability distribution 
that has maximum entropy. 

In view of the mathematical treatment we will 
arrange the available information into two different 
classes. The information of the first class is taken into 
account by properly defining the set of admissible 
maps, these be ing  the properties of positivity, 
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boundedness and periodicity of the electron density 
function. The other class is incorporated as con- 
straints to be fulfilled by the probability distribution, 
thus giving different weights to different maps. Infor- 
mation of this latter class will also be called constraint. 

A distinction will be made between the type and 
the form of a constraint. To illustrate this point let 
us assume that our information is the measured ampli- 
tude of a particular reflection, say IF°b(H)l 2. The 
observed structure factors will be measured in units 
of F°b(0) SO that they will be adimensional quantities 
related to an adimensional electron density function 
through 

if F~bh)= V p(r) exp(+2rrihr)d3r (2) 

and its inverse relationship 

p(r)  = ~  F ~ ) e x p  (-27rihr). (3) 
h 

With this normalization one possible choice of the 
type of constraint is 

Ill I V ~(r) exp(+2rriHr) d3r --[F°b(H)I2=O, (4) 

where r~(r) is the mean value of the adimensional 
random map m(r).  

The different choice of type of constraint 

1 I i,-- ~ (m(r)m(r')) exp [2will(r- r')] d3r d3r ' 

-IF~'~)12-- 0 (5) 

is an alternative way of taking into account the same 
experimental information. 

We will say that two constraints are of different 
type if they are expressed as functionals of different 
moments of the random map re(r). Within a given 
type different forms of constraints will denote differ- 
ent analytical expressions. 

We will now derive the probability distribution 
P[m] of observing the map m(r) using the PME. 
Such a functional has a meaning only if we define its 
domain, it means the set of admissible functions re(r). 
In the crystallographic case it will be those maps that 
are bounded between two values, zero and Pmax, and 
have the periodicity of the crystal. This is the largest 
domain we can consider but it can be significantly 
reduced if some other a priori information is intro- 
duced, as for example in the case where it is possible 
to distinguish the molecule from the solvent region 
in a protein. P[m] will also satisfy the normalizing 
condition 

[. PEm]~m = 1 (6) 

and a certain number of constraints. In this paper, 
we will assume that all constraints are functionals of 

the average map r~ (r), which has been identified with 
the estimate of the electron density function. 

The definition (1) of entropy can be extended to 
denumerably infinite probability distributions and the 
continuous case can be obtained either by a limiting 
process or by considering entropy variations. This 
expression is then extended to denumerably infinite 
continuous distributions, called stochastic processes, 
and to its limiting case of an infinite number of 
continuous distributions called random functions, the 
latter being the case considered in this paper. In our 
case the usual extension of Shannon's entropy grows 
linearly with the number of random variables, also 
called number of degrees of freedom. The pertinent 
quantity is then the entropy rate defined as the limit 
of the entropy per degree of freedom when the num- 
ber of degrees of freedom, denoted by Ix, goes to 
infinity (Papoulis, 1981). 

The entropy rate associated with the probability 
distribution P~,[m] is proportional to 

1 1 P~,[m]ln(P~,[m])~ S ~, = - Ix 

1 
= - - - ( I n  (P,[m])) ,  (7) 

Ix 

where the continuous integral extends over all func- 
tions belonging to the domain of P~,[m]. tx is here 
given a finite value, the limit as Ix ~ oo will be taken 
at the end of the calculations. 

We introduce the Lagrange multipliers Ap and 
In (Z~,/e)/ix to take account of the constraints, which 
we formulate as Cp = 0, and the normalizing condition 
(6). The maximization of 

S~,-Y. ApCp-ln (Zt,/e)l ix([ " P ~ , [ m ] ~ -  1) 
p 

(8) 

with respect to P~,[m] gives the maximum-entropy 
probability distribution of the random map m(r):  

, I ] P.[m]=~--~-exp - x(r)m(r)d3r , (9) 

x(r) being defined as 

x(r) =~ Apt~Cp[fft]/afft(r). (10) 
p 

8Cp[r~]/Sr~(r), the functional derivative of Cp with 
respect to r~ (r), is defined as the function of r, which 
to each variation of the map 8n~(r) associates the 
variation of Cp in the following way: 

aCp=(1/V) ~[~Cp/ar~(r)]ar~(r)dSr. (11) 

g(r) plays an important role in the following analysis 
because the main results are independent of the specific 
form of the constraints. The condition (6) implies 

I[ I ] Z . =  e x p - - ~  x(r)m(r)d3r ~ ,  (12) 
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SO that Z~,, the partition function, can be considered 
as a functional of x(r). All the quantities of interest 
will be expressed in terms of q~, = In (Z~,)/lx. In order 
to compute it we divide the unit cell into N equal 
cells of volume v, centered at points r> Each map is 
represented by the values of m(r) at these points. A 
sum over all the maps so constructed reduces then to 
a multiple integral over all values of m(rj) between 
zero and Pmax, for all rj, 

cl"~= l--ln{f exp[-vs~X(~)m(¢)v]d%n } 

=_lnL  ~ Jo exp m 

=lj~=lln({1-exp[--~x(rj)Pmax]} 

x (13) 

and we have to take the limit of this expression when 
the number N of equal cells and the number /~  of 
degrees of freedom go to infinity. For this subdivision 
of the total volume of the unit cell V, N equals/z  so 
that 

i x= N= V/v, t.tv/V= 1. (14) 

Then 

q~[X] = lim q~,,[x] 
/.t, --,'. o o  

1 ~  { 1 -- exp  [ - x ( r j ) P m a x ] l  
= l i m - ~  = In ~ j 

_ _ 1  V f ln{1-exp[-x(r)Pmax]/X(r)}d3r 

=lI(ln~sinh[x(r)Pmax/2] ~ 
L ~ ~  J 

-x(r)Pmax/2) d3r+!  n (Pmax). (15) 

3. Maximum-entropy estimates 

The maximum-entropy estimate of t he  electron 
density function is the mean value of the random 
map, and can be calculated as a functional derivative 
of q~ 

film(r) = ~ Pm[m]m(r)~m = - 8 ~ /  8x(r) 
= Pmax/2+(Pmax/2 ) . 

x { 1/x(r)/Omax/2 -- 1/tanh [x(r)Pmax/2]}. 
(16) 

This, together with (10) [wi th  ill(r) substituted by 
filM(r)],  

' x(r) =E  ap6Cp[film]/SfilM(r), (17) 
P 

defines the maximum-entropy estimate of the map as 
an implicit function of the Lagrangian multipliers Ap. 

We show in Fig. 1 trim as a function of X. 
Fluctuations of the random map around its average 

value can be studied within the present formalism. 
Let us call Am = m -- film and consider the mean value 
(Am(r)Am(r')). It can be used as a measure of the 
correlation of the statistical fluctuations of m at points 
r and r' and can be calculated as a functional second 
derivative 

(Am(r)Am(r')) =1 62crP~" (18) ~x(r) 8x(r')" 
Taking the limit as /z-> ~ ,  we obtain a finite value 
when r = r', zero otherwise. We write this result in 
the formal way 

(Am(r)Am(r'))=(Am2(r)){lim 6(r--r')/tz}, (19) 
i~  --* oO 

where the term between the braces is unity for r = r', 
and the mean-square value of the fluctuation of the 
map is 

(Am2(r)) = - dfilm [X ( r ) ] /dx ( r )  

-" (Pmax/2)2{[)((r)/9max/2]-2 

-sinh-2[x(r)Pmax/2]}. (20) 

Fig. 2 shows (Am2)/p2max and the relative fluctuation 
((am2))'/2/mM as functions of film/Pmax. 

The lack of correlation among the fluctuations of 
the map mani fes t s  itself in reciprocal space in a 
particular way, Let us call 

1 I F ( h )  =-~  m(r) exp(+27rihr)d3r (21) 

the random Fourier coefficient of the random map 
m(r), with mean value Fro(h), and A F ( h ) =  
F(h)-  Fro(h). Then 

(AF(h)AF*(h')) 

1 I =--~ (Am(r)Am(r')) exp [2"rri(hr- h'r')] d3r d3r ' 

_ 1 1 F (Am2(r))exp[2~i(h-h')r] d3r (22) 
~ V  J 

1.00, 

0.75', 
,, 

0-50, l 
f 
i 
J 

0 .25,  ,, 
,, 

0"00, I 3 i 0 X -30 -Io ' - ~ o  ' ; ' ,b ' 2'o ' 

Fig. 1. Maximum-entropy estimate r~M as a function ofx(equation 
16 with Pmax = 1). 



and setting h = h', we see that (IAF(h)l 2) is indepen- 
dent of the reciprocal vector h. This implies that the 
integrated mean-square fluctuation of the map is uni- 
formly distributed in reciprocal space, 

I 
f (Am2(r)) d 3 r = ~  --'. (IAF(h)12), (23) 

v ./ h 

in accordance with Parseval's theorem. 
The right side of (23) is a finite quantity so that 

the mean-square fluctuation of any particular Fourier 
coefficient of m(r) is vanishingly small. We arrive 
thus at the conclusion that the theory gives definite 
predictions of the structure factors. It turns out that 
this is a point of discrepancy between the theory and 
experience. Since the domain or set of admissible 
maps is a reasonable one, the bias comes either from 
the identification of the estimated map with the mean 
value of a random map or from the assumption con- 
cerning the type of constraint used. We will not dis- 
cuss here the possible solutions to this problem. We 
will simply cite (5) as a type of constraint that 
automatically leads to correlated fluctuations of the 
map. Such a type of constraint tends to emphasize 
the Patterson or autocorrelation function. 

4. Use of diffraction data 

We shall now consider some explicit expressions of 
the constraints that correspond to the type of informa- 
tion available in X-ray crystallography. Exact fitting 
of the data implies using one constraint equation for 
each structure factor. Most of the reflections have 
unknown associated phases. We will call ~ the set 

( A m 2 )  / p~ , .  

0.100 ' 

0.75 

0.075, 

0.050 

0.025 

0-000,  
0-0 0.2 0-4 0.6 0.8 

(a) 
1.00, 

I I I 

I r # , , I p ~ , .  
1"0 -- 
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0-50, 
i 

0.25, 
i 

0.00' 
0.0 0.2 0-4 0.6 0.8 1 f-0 rh , . , I pm, ,  

(b) 
Fig. 2. (a )  Mean-square  f luc tua t ion  o f  the map as a f unc t i on  o f  

ttlM/Pmax. (b) Relative fluctuation of the map as a function of 
fflM / Pmax. 

of the corresponding reciprocal vectors and ~ the 
set whose associated structure factors are known in 
modulus and phase. We will have one complex 
equation of the form 

1 I CH[~M]=-~ r~M(r) exp (+27riHr) d3r 

- F ° b ( H )  = 0  (24) 

for each H in ~ and one real constraint equation 

CK[mM]= ~ ff~M(r) exp (+27riKr) d3r 

-IF°U(g)l =0 (25) 
for each K in ~'{. If both H and - H  are in W, the 
constraints (24) can be used in complex form and the 
corresponding Lagrange multipliers will be complex 
numbers satisfying h-H = h* ,  because of Friedel's 
law. It will also be assumed that K and - K  belong 
to ~.  

The function x(r) given by (17) is now 

8CH ~CK 
x(r)= ~ /~* (~M(r~+ ~ ~K He~C K~SY ~r~lM ( r )  

= ~ tZH exp(-2rtiHr) 
H e ~  

+ ~ VK exp(i~K)exp(-2zriKr), (26) 
KeSY 

where ~K is the phase of FM(K) and VK is a real 
number, positive or negative. The function x(r) 
depends on r~M(r) through the phases eK- 

Summarizing, the maximum-entropy estimate of 
the electron density function is r~M given by (16), 
where x(r) is a trigonometrical polynomial 

x(r) = ~, t~ L exp (-27riLr) (27) 
Le ~ ' u  9/" 

having as many terms as observed structure factors 
are available. The A's are complex numbers deter- 
mined so that the Fourier coefficients of film (r) satisfy 

F M ( H ) -  F°b(H) = 0  (28) 

for each H in W, 

]FM(K)[- [F°b(K)]  = 0 (29) 

and 

A* PM(K)-hKP*(K)=O (30) 

for each K in ~. The latter equation is simply another 
way of writing the equality, modulo 7r, of the phases 
of h K and ~#M (K).  

The determination of the Lagrangian multipliers 
requires the solution of the system (28)-(30) of as 
many equations as unknowns. In principle the esti- 
mate of the electron density function r~M(r) is now 
completely determined. 
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5. Expression of the entropy of the maximum-entropy 
probability distribution of maps as a functional of the 

average map 

We will now show how the estimated map  can be 
obtained starting from the entropy rate expressed in 
terms of r~M. This will lead us to a maximum-entropy 
algorithm in which the estimated map is the solution 
of the constrained maximization of the entropy rate. 

Substituting (9) into (7) and taking the limit as 
/x->~,  we obtain an explicit expression for the 
entropy rate as a functional of x(r) 

SM = lim -<ln  (P#[m])/tz) 
p . - - ~  o o  

l I = qb[X]+- ~ x(r)r~M(r)d3r 

1 =~[X]--~ f x ( r )~d3r  

= 1  f ( ln  ~sinh[x(r)Pmax/2]~ 
V [ x(r)Pmax/2 J 

X__(r)Pmax/2 
d3r+ ln  (epmax). (31) 

tanh [x(r)Pmax/2]] 

Here X is considered as a function related to r~M by 
(16), so that SM is defined parametrically as a func- 
tional of r ~ .  Moreover, owing to the local relation- 
ship between r ~  and X it is in fact the integral of a 
function of r~M, 

1 I SM=--~ h[fflM(r)]d3r. (32)  

Fig. 3 shows h as a function of rfiM/Pmax. 
Using the definition (31) of the entropy rate we 

can easily compute the variational derivative of SM 
with respect to rhM (r). It turns out to be 

8SM/t~ff/M ( r )  = x(r) (33) 

so that the constrained maximization of S~ under 

h 
0"01 

-lo: / \ 

- - 2 "51  I I I I I I I I I t .r~,/p~.. 
0 0.2 0.4 0"6 0'8 1 '0 

Fig. 3. Entropy density h as a function of r~M/pmax (equation 32). 

the same constraints Cp = 0 implies 

• ~ " . .  x,C,[,~M] 1 

=x(r)-~-'~ApSCp/Sr~M(r)=O, (34) 
p 

which is the same relationship between X and the 
constraints as in (17). 

The problem of construction of the electron density 
function can thus be solved in two steps. We first use 
a maximum-entropy probabilistic description as a 
device to obtain an entropy expression in terms of 
the estimated map.  Next we use this entropy 
expression to determine the estimated map b y  means 
of a maximization procedure under the same con- 
straints used in the previous step. 

The latter step constitutes the MEM and can be 
seen as a procedure to discriminate between possible 
maps (Gull & Daniell, 1978; Bricogne, 1982). 

6. Other entropy expressions ,. 

The entropy expression (31) depends only on the set 
of admissible maps and on the type of constraints 
employed but not on their •specific form. It is valid 
for constraints that are expressed as functionals of 
the estimated map r~M. Keeping this same type of 
constraint we may try to vary the domain of P[m] to 
deal with more general situations. For example, we 
may have some a priori knowledge about the solvent 
region in a protein structure or about the disordered 
region in the final steps of a structure determination. 
We may also be interested in neutron diffraction maps 
that have negative as well as positive scattering-length 
densities. 

All these cases can be dealt with by simply restrict- 
ing the domain of P[m] tO the set of maps that are 
bounded between two functions, Pmax and Pmin, with 
Pmax( r) >-- Pmin( r) for all r. 

The resulting expressions are very similar to those 
already deduced when expressed in terms of the two 
functions 

pm(r)=~[Pmax(r) + Pmin(r ) ]  
(35) 

A p ( r )  = ~[Pmax(r)  -- Pmin( r ) ] ,  

which represent the mid-point between the two 
bounds and one half of the amplitude respectively. 

The logarithm of the partition function is now 

--VI( ln~sinh[X(r)Ap(r)]'~l, x(r)Ap(r) J x(r)pm(r)) d3r 

1 I + - -  In [2Ap(r)] d3r, (36) 
v 

from which the maximum-entropy estimate of the 
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map and the entropy rate can be calculated, 

r~M(r)=p,,,(r)+ Ap(r) 

x 1 1 Ap(r)]} '  (37) 
x(r)-Ap(r) tanh [x(r) 

1 SM ~ f (ln ~ sinh[X(r)Ap(r)]~ 
= t -x r--S- piri J 

x(r)Ap(r) '~ d3 1 f t a n h ~ ( r ) ] ]  r+~ ln[2eAp(r)]dSr. 

Equations (37) define, parametrically, the entropy 
rate as a functional of the estimated map. 

When the upper limit Pmax of the admissible maps 
goes to infinity, the entropy rate is simply 

1 I SM=-~ In [r~M(r)] d3r (38) 

and the estimated map 

r~M(r)= l/x(r). (39) 

It has been demonstrated that (38) is proportional to 
the logarithm of a Karle-Hauptman determinant of 
infinite order (see e.g. Narayan & Nityananda, 1982). 
The positivity of such a determinant is a consequence 
of the sole positivity of the estimated map, a result 
consistent with the information we have used to derive 
(38), 0-< m(r) < ~ .  

7. Use of atomicity 

In the crystallographic case the problem of construc- 
tion of the electron density function can be formu- 
lated in a still different way by explicitly using the 
notion of atomicity. The hypothesis of atomicity 
allows us to write the observed structure factors as 
explicit functions of the atomic positions. In the case 
of a structure consisting of A identical atoms they are 

A 
ob F(u)=f(H) Y, exp(+2zriHra), (40) 

a = l  

where the f ( H ) ' s  are the Fourier coefficients of an 
isolated atom. We proceed along the same lines of 
§ 2 and look for the less biased distribution of A 
atoms in the unit cell. Any distribution of the A atoms 
will be completely characterized by a sequence of 
numbers that take the values zero or one, such that 
the sum of these numbers equals A. We will discretize 
the unit cell by choosing N points in it. The limit as 
N tends to oo will be taken at the end of the calcula-" 
tions. A particular sequence n will then be 

N 

n={n,,...,nN}, nj=0 ,1 ,  E nj=A. (41) 
j = !  

The subindex j denotes the position rj in the unit cell. 
The n/s will be called the occupation numbers. 

The sequence n plays now the role of the random 
event and, as in (21), it will be associated with a 
random 'Fourier coefficient' 

N 

F(h)=f(h) ~ n~exp(+27rihrj). (42) 
j = l  

To deduce the probability distribution Pin] of 
sequences, we have also to make a choice of the type 
of constraint to be employed. The analog to the one 
used so far is, for example, 

N 

f(H) ~ fijexp(+27rinrj)-F°b(H)=O, (43) 
j = l  

i.e. the constraints are expressed as functions of the 
mean value of the sequences, a = {fij}. 

Maximization of Shannon's entropy (1), subject to 
a certain number of constraints Cp = 0 and the nor- 
malizing condition 

P [ n ] =  1 (44) 
?1 

gives 

where 

P [ n ] =  ( l / Z )  exp ( -  =, xjnj , (45) 

x~=E Ap OCp[fi]/Ofij. (46) 
P 

The evaluation of Z is rather complicated because 
of the condition (41). The expression is recognized 
as the one leading to the Fermi-Dirac distribution if 
the x/s are replaced by the energy values e/s. It is 
well known that, if A and N are large numbers, the 
strict condition (41) can be replaced by 

N 

Y. f i j - A = 0  (47) 
j = l  

and the summation is now performed over all possible 
values of the independent occupation numbers 
(Landau & Lifshitz, 1959). Moreover, (47) is a con- 
straint of the same type as the Cp's and can be 
incorporated into (46). 

The results are 
N 

• = ~ l n [ l + e x p ( - x j ) ]  
j = l  

fi~ = 1/[1 +exp (xj)] (48) 

N 

SM = -- Y~ { fi~ In ( fi~ ) + ( 1 - fi~) In ( 1 - aJ~) }. 
j = l  

To obtain the limit of these expressions when N 
tends to infinity we will assume that the r/s are the 
centers of small cubes of volume v = V/N. Then a 
limiting argument is used: The fi~'s are written in 
terms of a density PM (r) as 

fi~4=ffM(t))v/V=~M(rj)/N (49) 
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so that any summation involving the fi~'s will tend 
to an integral involving/~M. If no t~J ~ is strictly equal 
to unity, the density function will be, in general, 
well-behaved. Each unitary ~ gives rise to a 8 distri- 
bution centered at the position r s. If such contributions 
are assumed not to exist (although they can be easily 
taken into account by a subtraction procedure), (49) 
gives the asymptotic behavior of the t ~ ' s  for large 
N. This together with the inverse of the second 
equation in (48) gives 

xs=ln N -  In [/~M (rs)], (50) 

which shows a logarithmic divergence for large N. 
We can then write 

x j= ln  N+X(~)), (51) 

where x(r) is in general a well behaved function. 
Substituting from (51) into (48) and taking the limit 

N--> oo, we obtain 

@= ( l /V)  ~exp[-x(r)]dar 

/~m(r) = exp [ -x ( r ) ]  
(52) 

S~[XI = ~ - ( 1 /  V) ~ x(r)[8~/ 8x(r)] d3r 

= (1/V) I exp [-x(r)](1 + x(r)) d 3r 

Sm[Pm]=(-1/V) ~Pm(r) In (pm(r)/e) d3r. 

The entropy expression in (48) also gives rise to an 
additional term 

In (N)(1 /V)  ~/~M (r) d3r. (53) 

For fixed but large N this contribution is absorbed 
by the Lagrangian multiplier associated with the con- 
straint (47). Besides, this term behaves as an additive 
constant because of this same constraint (47) and can 
hence be eliminated from the entropy. 

The meaning of (53) is that the greater the number 
of cells accessible to the A atoms, the greater the 
uncertainty about their positions. It can also be inter- 
preted as an expression of the fact that, in practice, 
two very close positions cannot be considered as 
distinct (Papoulis, 1981). This entropy expression has 
been extensively used in the literature. Although our 
derivation uses the explicit hypothesis of atomicity it 
can also be obtained using the formalism of the pre- 
ceeding sections under an additional assumption con- 
cerning the measure of integration ~m (see e.g. 
Levine, 1980, for a derivation in a discrete case). 

8. Numerical methods 

The estimate of the electron density function r~m(r) 
is determined by the set of h's that satisfy the system 
of equations (28)-(30). When the phases of the 
observed structure factors are available, the Newton- 
Raphson procedure applied to (28) gives, if it exists, 
the unique solution. This method consists in correct- 
ing the current estimate of the h's by an amount AA 

that cancels the first-order expansion of (28) (Hilde- 
brand, 1956). This expansion is 

pm(H)_FOb(H) + ~ OFM(H) sAL 
L ~  COAL 

=Fm(H)-F°b(H)+ ~ HH, LSAL. (54) 
L ~  

The matrix H is easily calculated from the expression 

t~PM(H) = (1/V) j" (dtf i~/dx) 8x(r)d3r 

= -  ~ (1/V)~(Am 2) 
L e W  

x exp [+2rri(H - L)r d3rSAL 

= -  ~ D(H-L)SAL, (55) 
L ~ '  

getting H = - D .  The matrix D is positive definite and 
not singular for all finite values of the A's because it 
is the Karle-Hauptman matrix of the positive-definite 
function (Am 2) given by (20). So the correction AA 
equals the inverse of D times the differences ( F M -  
FOb). 

Even if this procedure can be readily generalized 
to the treatment of problems where some phases are 
not known, the convergence of the Newton-Raphson 
method becomes very uncertain when applied to (28)- 
(30). 

If the unknown phases ~PK are considered as fixed 
parameters, the problem of the determination of the 
h's is reduced to the previous one except that now a 
solution exists only for ~PK'S inside a restricted domain 
of admissible phases. Moreover, as will be seen later, 
(30) is only a condition of stationarity, so that a 
solution of (28)-(30) does not necessarily correspond 
to a maximum of the entropy. 

To obtain a maximum the following iterative pro- 
cedure can be adopted. First a particular solution of 
the restricted system of equations (28)-(29) is 
obtained, without taking into account the constraints 
on the phases, by minimization of the function 

R=½ Y. [PM(n)--F°b(n)12 

+½ E (IFm(g)]-IF°b(g)l)= (56) 
K~SC 

with respect to the complex A's. Using the notation 

A FL = P~( L) - F°b( L) for L~ 
(57) 

AFL=FM(L)--'IF°b(L) exp(i~0L) forL~Srt" 

and (55), the gradient of R can be expressed as 

OR _ -  ~ D(L-L ' )  AFt,. (58) 
OA * L'~e~X 

The vanishing of the gradient implies the vanishing 
of each one of the differences /iF, provided that the 
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h's take finite values. It turns out that the Newton- 
Raphson method, when applied to zaF--0, gives the 
same corrections AA as in the case of known phases, 
under the condition that no ff'M (K) be zero (otherwise 
the derivatives of I/~M(K)I are not defined). This 
condition is certainly satisfied in the neighborhood 
of any of the many possible sets of h's that make R 
a minimum. The particular solution so obtained corre- 
sponds to a particular set of phases ~ )  belonging to 
the restricted domain of admissible phases. 

In a second step the equilibrium entropy rate is 
expanded in powers of the differences 6~K = 
~PK - -  CR(K °), 

~-~ aSM 8 SM ~-- S~  ) + 1. T---- ~K 
K~5~ O~K 

+½ ~ a2SM 6~K 6~K. (59) 
K,K'~X 0~K 0~K' 

and a new set of phases, corresponding to the 
maximum of (59), is determined (this amounts to 
applying the Newton-Raphson procedure to 
OSM/O~pK = 0). New h's  are then calculated to fit the 
new phases and the observed moduli as well as the 
observed complex structure factors. This second step 
is repeated until the vanishing or the first derivative 
of SM is obtained. 

The procedure converges very rapidly if all the 
eigenvalues of the Hessian matrix in (59) are negative, 
which correspond to a local concave domain in the 
space of phases. Otherwise several iterations are 
needed to move the phases into a concave domain. 

The derivatives entering in (59) are calculated using 
(33), which gives 

1 f 6SM ~,_, aSM = -V ~ am-~-(-r) omt r) d 3 r 

l I = V  x(r) SmM(r)dar 

= ~ A* 8FM(K) (60) 
K ~ .~" 

and recalling that K and - K  are in Y[ and also that 
8¢K = --6¢-K, 

aSM 
O~O K 

- i [ A *  PM(K) -AKP*(K)] .  (61) 

The second derivatives are calculated using the 
inverse of the relationship (55) 

a2SM/a~K a~r ,  

= - [ a *  FM(K) + AKF*(K)] arK' 
+ i [ FM(K )aA  * / a,pK. - # * ( K )  ax,, / a,pK.] 

real I - A *  F M ( K ) a K K ' + -  - '  = FM(K)D-K,K,FM(K') 

-- P~(  K)D~_K,PM( K')] x2, (62) 

where D -~ is the inverse of the matrix D. 

The condition of local maximum of SM with respect 
to the unknown phases is that the matrix (62) be 
negative definite. In the case where the set consists 
of the only reflection H - - 0 ,  the translational invari- 
ance of the problem manifests itself in a threefold 
degenerate eigenvalue of (62) corresponding to three 
linearly independent translations. At a local 
maximum all the other eigenvalues must be less than 
zero. 

When a great number of h's have to be determined, 
the Newton-Raphson procedure cannot be used 
because it needs the inversion of matrices of high 
dimensionality. In such cases other techniques should 
be applied. 

The procedures described above are not exempt of 
possible divergences owing to inconsistencies in the 
data as, for example, if no positive map could repro- 
duce the observed F°b's. 

A different method can still be used to obtain a 
solution in all practical cases. The procedure involves 
the minimization of the function 

G = R - tS (63) 

with respect to the A's, t being a positive parameter. 
From (55), (58) and (60), the gradient of G can be 
calculated, giving 

OG _ ~ D( L -  L')( AFL,- tAL,). (64) 

The parameter t forces the A's to take finite values 
so that the matrix D is not singular. Thus, the condi- 
tion of stationarity of G can be written either as the 
vanishing of its gradient or, equivalently, as 

AFL- tAL =0.  (65) 

A solution of (65) will also satisfy (30). Thus, the 
stationarity of G with respect to infinitesimal vari- 
ations of the A's implies the stationarity of SM with 
respect to infinitesimal variations of the unknown 
phases. 

The minimization of G can be accomplished by a 
modified gradient method based on (65). We have 
seen that the left side of this equation equals the 
negative of a positive-definite matrix times the 
gradient of G. It defines then a direction of descent 
of G. The correction AA to the current A's can then 
be taken along this direction 

AAL = OI( AFL  -- tAL) (66) 
where the step a can be given a fixed value or can 
be calculated by linear search along the direction 
defined by (65) (see e.g. Agarwal, 1978; Le Marechal, 
1981 ). Two Fourier transforms are needed to calculate 
the function G and the direction of descent. If we 
now call A' a stationary solution of G for a given 
fixed value of t, it is obvious that the limit, if it exists, 
of A' as t goes to zero is a solution of the system 
(28)-(30). This limit may not exist because some of 
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the h"s  can diverge as 1/ t  as t tends to zero [the 
product t times h t being finite as implied by (65)]. 

In practical applications the parameter t can be 
given a value so as to obtain a reasonable R factor. 
However, qualitatively new results (e.g. super-reso- 
lution) can be obtained if the data are known to 
high accuracy so that the limit t -  0 can be safely 
taken. 

Functions similar to G but with different entropy 
expressions and R factors, and involving the electron 
density values as variables, were considered by several 
authors (Gull & Daniell, 1978; Khachaturyan et al., 
1981 ; Wilkins et al., 1983; Collins, 1982). One of these 
functions was based on statistical thermodynamic 
analogies (Khachaturyan et aI., 1981, equation 6) and 
consists of a Fermi-Dirac entropy expression plus an 
R factor involving the intensities instead of the struc- 
ture factors. It can easily be proved that the condition 
of stationarity for this function can be written as 

[IPM(K)I2-1F°b(K)I2]P,,,(K)-t;t,~=O. (67) 

Equation (67) admits h r  = 0, FM(K) = 0 for some 
K in E{ as solutions. However, such particular so- 
lutions cannot be present if sufficiently small values 
of t are used because they give rise to important 
contributions to the R factor. For solutions with 
non-zero FM'S, (65) and (67)_give the same phase 
relationship between h r  and FM(K) .  

Other authors use a weighted R factor as a con- 
straint in order to avoid spurious detail in the map 
arising solely from noise in the data, and also to 
reduce the dimensionality of the minimization prob- 
lem (Gull & Daniell, 1978; Wilkins et al., 1983). A 
closer examination of the problem shows that the 
amount of calculation they need is the same as in our 
case. In fact, (65) is the analog of that given by Gull 
& Daniell to determine the map, whose evaluation 
implies essentially two Fourier transforms, but now 
the successive iterations are computed in reciprocal 
space (the space of the h's) of smaller dimensionality. 

There is, however, a practical difference between 
our approach and those that use density values as 
variables. In fact, the minimization procedure defined 
by (66), or yet the method of successive substitutions 
defined by (65), need only the values of the Fourier 
coefficients P~ corresponding to observed reflections. 
These coefficients are functions of the current h's and 
are obtained essentially by two Fourier transforms 
computed by numerical methods, which impose a 
discretization of the unit cell. We will speak of grid 
resolution when referring to discretization to differ- 
entiate it from the experimental resolution. If the 
relationship between r~M and X were linear a grid 
resolution corresponding to the experimental reso- 
lution could be taken because of Shannon's criterion 
of sampling (Brillouin, 1962), but considering the 
particular form of this relationship a greater grid is 
expected to be needed. The only requisite to be ful- 

filled by the grid resolution is to supply accurate 
values of the needed FM's. 

Such a grid may correspond to non-interpretable 
auxiliary maps, i.e. maps from which the PM's are 
calculated by a numerical Fourier transformation, 
even if the final h's give rise to interpretable ones. 
This remark can help in reducing the dimensionality 
of the minimization problem. 

Several authors have studied the minimum grid 
spacing that allows a good evaluation of phases and 
amplitudes of structure factors (Barret & Zwick, 1971 ; 
Collins, Cotton, Hazen, Meyer & Morimoto, 1975; 
Ten Eyck, 1977). The number of points at which the 
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0-8. (c) Inverse Fourier transform computed with the same nine 
observed structure factors (fi). 
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electron density should be sampled in any direction 
should be at least three times the highest index in 
that direction. 

Calculations can be started with a great grid 
spacing, switching to a smaller spacing to improve 
the accuracy of the A's only at the final steps of the 
procedure. This switching does not involve in our 
case any interpolation at all. 

9. Numerical results 

The most interesting results were obtained when the 
estimate of the electron density function fitted exactly 
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the available data. Equations (28)-(30) were applied 
to different sets of data corresponding to a 
hypothetical one-dimensional P 1 seven-atom 
structure. 
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moduli F°b(K), K = 0- I I. (c) Inverse Fourier transform com- 
puted with the twelve coefficients F°b(H), H = 0-11 (t;). 
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Three cases were considered (0 denotes the empty  
set): 

(a)  Y ( # 0  and  Y { # O  
(b) Y ( # 0  and Y { # O  
(c) Y(=0  and Y(#0 .  
In case (a)  the system (28) was solved by the 

N e w t o n - R a p h s o n  method  starting with all A's equal  
to zero, which corresponds to a uni form map.  

The result ing electron density estimate is shown in 
Fig. 4. It is undoub ted ly  more realistic than the corre- 
sponding inverse Fourier  t ransform and it exhibits 
super-resolution. 

The statistics of  the deviat ion of the est imated 
structure factors from the true values are d isplayed 
in Fig. 5. This figure shows the crystal lographic R 
factor and  the mean  value of  the phase deviat ion 
([~pM(H)--~p°b(H)l) corresponding to extrapolated 
data as a funct ion of  resolution. 

In case (b) a par t icular  solution of  the restricted 
system (28)-(29) was obtained with the Newton-  
Raphson  procedure.  The phases corresponding to this 
solution were then modif ied so as to maximize  the 
entropy (59), and new A's were calculated as in case 
(a).  This was repeated until  the vanishing of  the 
derivatives (61) was obtained.  
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Fig. 8. (a) Estimated map based on eight complex structure factors 
F°b(H), H--0-7, obtained by maximization of SM (equation 
32). (b) Estimated map based on the same structure factors 
obtained by maximization of ( - l /V)  j rfi In (rfi) d3r(r~). 

The result ing est imated m a p  is shown in Fig. 6. 
In case (c) the same procedure  as in (b) was adop- 

ted. A starting set of  r andom complex A's was used 
to avoid centrosymmetr ic  solutions. The results 
obtained were always the same, after a possible enan- 
t iomorph  reversal and origin shift, irrespective of  the 
starting point,  when a m a x i m u m  was looked for. 
Stationary solutions were also obtained,  correspond- 
ing to smal ler  values of  the entropy. The est imated 
phases computed  with one of  these stat ionary so- 
lutions were close to the true ones. 

The result ing est imated maps,  for different n u m b e r s  
of  unknown  phases,  are shown in Fig. 7. It is interest- 
ing to compare  the eigenvalues and the diagonal  terms 
of  the matr ix (62) corresponding to different sets of  
phases.  For the phases  that make the entropy a 
m a x i m u m  these quanti t ies are small  negative values, 
ranging from zero to - 1 3  in the case of  12 u n k n o w n  
phases.  For the true phases the eigenvalues range 
from 16 to - 1 4  800 and  the diagonal  terms from - 3 4  
to -8700.  This means  that the true phases are, 
individual ly ,  near  the top of  a very sharp m a x i m u m  
whereas, as a whole,  they are not even placed in a 
concave region. The mean  phase deviat ion between 
the sets of  phases  is 53 ° . 

Tests were per formed using the expression 
( - 1 / V )  ~ n3 In (rfi) dar for the configurational  entro- 
py. In most  cases the results were quali tat ively similar,  
a l though some situations were found where our for- 
mula t ion  gave better results, as i l lustrated in Fig. 8. 

The algori thms were p rogrammed  in the APL com- 
puting language.  The programs are at the disposal  of  
any interested reader. 
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Abstract 

The established procedure for analyzing molecular 
vibrations in terms of normal modes has been adapted 
so that experimental anisotropic thermal parameters 
can be used to study low-frequency internal vibrations 
of simple molecules in crystals. This involves 
quasinormal modes, which are linear combinations 
of selected low-frequency internal modes such as the 
torsional librations about individual bonds. Higher- 
frequency modes are neglected, since their contribu- 
tion to the atomic mean-square displacements should 
be small. The force constants for selected low- 
frequency internal modes, together with the tensor 
components (T,L,S)  that describe the overall 
molecular vibration, become the variables in an 
iterative least-squares refinement in which the 
observations are the atomic U0 values. As a result, 
the concerted motion of the atoms for each quasinor- 
mal mode is defined and also its vibrational 
frequency. Corrections to bond lengths and angles 
due to internal vibrations can be calculated. In tests 
involving two different lipid crystal structures, the 
internal motions were introduced as torsions about 
two or three bonds occurring near the junction of an 
extended hydrocarbon chain with a relatively rigid 
massive atomic grouping. Compared with the simple 
rigid-body model, there were highly significant 
improvements in agreement between experimental 
and calculated U U values. Force constants for torsion 
about three C-S bonds were also in agreement [26 (5), 
23 (6) and 22 (6) J mo1-1 deg-2]. In one of the crystal 
structures (determined at 123 K), the six C-C bonds 
of a paraffin chain have average lengths 1.526 (2) A 
before correction, 1.527 (3)A after correction for 
simple rigid-body libration and 1.536 (4) A after cor- 
rections including the quasinormal vibrations. The 
latter agrees with the electron diffraction value 
1.542 (4) A for n-hexadecane. 
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Introduction 

In the analysis of molecular vibrations in terms of 
atomic anisotropic thermal parameters, a model must 
be introduced in order to define how the individual 
atomic motions are correlated with each other. The 
most widely used is the rigid-body model (Cruick- 
shank, 1956; Schomaker & Trueblood, 1968). When 
internal modes of vibration are appreciable, they may 
be taken into account by assuming that the molecule 
consists of rigid segments with the segments in relative 
motion (Johnson, 1970; Dunitz & White, 1973). 
Usually, they are assumed to ride on each other 
(Busing & Levy, 1964), but otherwise to move in an 
uncorrelated way. 

There are certain kinds of molecules that are not 
well suited to analysis with these models. They 
include molecules with semi-rigid fused-ring systems, 
such as cholesterol and other steroids, and lipids in 
which a lengthy hydrocarbon chain is attached to a 
bulky more rigid segment, such as the fatty-acid esters 
of cholesterol. Thus, it would be desirable to treat 
the vibrations of atoms along the lipid chain as being 
correlated in various ways that can be readily defined 
and tested against the diffraction results. With this 
aim, we have developed a general procedure based 
on the normal coordinate analysis of molecular vibra- 
tions (Wilson, Decius & Cross, 1955). It is assumed 
that molecules in the crystal are vibrating indepen- 
dently of each other. The internal motion of each 
molecule is described in terms of quasinormal modes. 
A quasinormal mode is defined as some linear combi- 
nation of a small number of internal modes of vibra- 
tion. A particular internal mode would typically be 
the torsional motion of the ~nolecule about a selected 
covalent bond. The major simplifying approximation 
is the neglect of high-frequency internal modes such 
as framework bond stretching and bond-angle bend- 
ing. These modes have large force constants and thus 
make only a small contribution to the mean-square 
(m.s.) atomic displacements. As a result of such sim- 
plification, the internal motion of the molecule can 
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